If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-8y-32=0
a = 4; b = -8; c = -32;
Δ = b2-4ac
Δ = -82-4·4·(-32)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-24}{2*4}=\frac{-16}{8} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+24}{2*4}=\frac{32}{8} =4 $
| 4y^2-8y+32=0 | | 2x^2+7x-12=3 | | 6x+5-5x=4x+14 | | 0=8+v | | y=12(2)-4 | | 3(r+8)=78 | | 1x+3=2×-5 | | -4y^2+8y+32=0 | | 5=a-47/6 | | 153=-9p | | 4y^2+8y+32=0 | | 9x+5-6x=6x+17 | | 24+6m=78 | | 9x+8-6x=-4x+16+3x | | -12+n=-13 | | 4x^2+28x-28=0 | | 6x+10=-6+4x | | -6=-17-m | | 6^2-5(6)-6-x(6-6)^2=0 | | -9-3x=-6-6x | | 14=a-(-3) | | j+27/7=7 | | -16x-80=-96 | | t^2=5.1 | | -5-10x=-14-7x | | 5x-2=12+7x | | 2x^2-5x-700=0 | | -13+-18=n | | 0.35x+1.6=0-0.5 | | x=14+-6 | | -7a+16-3a=4 | | v2/25=100 |